
LR(1) and LALR(1) Grammars 



All of the practical bottom-up parsing techniques start with 
something like the LR(0) parse tables.  The techniques differ in the 
ways they resolve conflicts in the tables.  For example, consider the 
grammar 
 P1:  S' ::= S EOF 
 P2:  S ::= a+x+E 
 P3:  E ::= a+E 
 P4:  E ::= a 
 
The LR(0) automaton contains a state that has the following items 
in it:   [E ::= a.+E] and [E ::= a.]   The first item wants to do a shift if it 
sees a + token; the second item wants to do a reduction using rule 
P4.  What do we do?   



Here are 4 possible ways to resolve such conflicts: 
 
LR(0):  Don't allow conflicts. 
SLR(1):  Use the next token to determine what to do.  On a 

shift/reduce conflict with [A ::= a.b] and [B ::= a.], shift 
the next token if it is in First(b), and do a reduction using 
the B-rule if the next token is in Follow(B).  Of course, this 
requires First(b) and Follow(B) to have nothing in 
common.  On a reduce/reduce conflict with [A ::= a.] and 
[B ::= a.], use the Follow(A) and Follow(B) sets to resolve 
the conflict. 

LR(1):  Modify the LR-automaton to include in each item the 
token that could possibly follow it.  Use this for the 
disambiguation. 

LALR(1): Use the SLR(1) automaton.  At points of conflict work 
backwards to find the lookahead tokens that can be used 
to resolve the conflict.  



An LR(1) item is [A ::= b1.b2, t], where [A ::= b1.b2] is an LR(0) item 
and t is a token.  This is viable if we can derive the string a b1b2 w 

and t is in First(w).  In other words, it means that t is the next input 
symbol to follow b1b2.   
 
 
Consider the following grammar: 
 P1:  S' ::= S EOF 
 P2:  S ::= AaAb 
 P3:  A ::= bA 
 P4:  A ::= d 
 P5:  S ::= BbBa 
 P6:  B ::= d 



This grammar is not   SLR(1); the automaton for it has a state 
containing both [A ::= d.] and [B ::= d.].  Since Follow(A) and 
Follow(B) are both {a, b}, there is no hope of using the Follow sets 
to resolve the conflict.   
 
We can build an LR(1) table for this grammar.  It starts with a 
state containing all of the following items: 
 [S' ::= .S EOF, EOF] 
 [S ::= .AaAb, EOF] 
 [S ::= .BbBa, EOF]  
 [A ::= .bA, a] 
 [A ::= .d, a] 
 B ::= .d, b] 
Note that we add the rule [A ::= .bA, a], because the dot in                 
[S ::= .AaAb] is in front of the non-terminal A; after we find this 
initial A we expect it to be followed by a.  This is the lookahead in 
[A ::= .bA, a] 



This process continues until all states lead to reductions.   
 
This is fine and very general, but the resulting automata and 
their tables are very large.  The LR(1) table for typical 
programming language has several thousand states and 
hundreds of thousands of entries.   
 
The LALR(1) technique builds the LR(0) automaton, then works 
backwards from conflict states to find the appropriate LR(1) 
lookaheads.  The text has the details of an algorithm for this.   



For a typical language like C there are about 100 
grammar rules and somewhere between 50 and 
100 valid tokens. 
 
An LR(1) parse table for such a language has 
several thousand states, several hundred 
thousand entries, and a table size on the order of 
1 MB. 
 
An LALR(1) parse table for the language has 
several hundred states, perhaps 20,000 entries 
and occupies less than 100 KB of space.3 


