
LR(1) and LALR(1) Grammars

All of the practical bottom-up parsing techniques start with
something like the LR(0) parse tables. The techniques differ in the
ways they resolve conflicts in the tables. For example, consider the
grammar
 P1: S' ::= S EOF
 P2: S ::= a+x+E
 P3: E ::= a+E
 P4: E ::= a

The LR(0) automaton contains a state that has the following items
in it: [E ::= a.+E] and [E ::= a.] The first item wants to do a shift if it
sees a + token; the second item wants to do a reduction using rule
P4. What do we do?

Here are 4 possible ways to resolve such conflicts:

LR(0): Don't allow conflicts.
SLR(1): Use the next token to determine what to do. On a

shift/reduce conflict with [A ::= a.b] and [B ::= a.], shift
the next token if it is in First(b), and do a reduction using
the B-rule if the next token is in Follow(B). Of course, this
requires First(b) and Follow(B) to have nothing in
common. On a reduce/reduce conflict with [A ::= a.] and
[B ::= a.], use the Follow(A) and Follow(B) sets to resolve
the conflict.

LR(1): Modify the LR-automaton to include in each item the
token that could possibly follow it. Use this for the
disambiguation.

LALR(1): Use the SLR(1) automaton. At points of conflict work
backwards to find the lookahead tokens that can be used
to resolve the conflict.

An LR(1) item is [A ::= b1.b2, t], where [A ::= b1.b2] is an LR(0) item
and t is a token. This is viable if we can derive the string a b1b2 w

and t is in First(w). In other words, it means that t is the next input
symbol to follow b1b2.

Consider the following grammar:
 P1: S' ::= S EOF
 P2: S ::= AaAb
 P3: A ::= bA
 P4: A ::= d
 P5: S ::= BbBa
 P6: B ::= d

This grammar is not SLR(1); the automaton for it has a state
containing both [A ::= d.] and [B ::= d.]. Since Follow(A) and
Follow(B) are both {a, b}, there is no hope of using the Follow sets
to resolve the conflict.

We can build an LR(1) table for this grammar. It starts with a
state containing all of the following items:
 [S' ::= .S EOF, EOF]
 [S ::= .AaAb, EOF]
 [S ::= .BbBa, EOF]
 [A ::= .bA, a]
 [A ::= .d, a]
 B ::= .d, b]
Note that we add the rule [A ::= .bA, a], because the dot in
[S ::= .AaAb] is in front of the non-terminal A; after we find this
initial A we expect it to be followed by a. This is the lookahead in
[A ::= .bA, a]

This process continues until all states lead to reductions.

This is fine and very general, but the resulting automata and
their tables are very large. The LR(1) table for typical
programming language has several thousand states and
hundreds of thousands of entries.

The LALR(1) technique builds the LR(0) automaton, then works
backwards from conflict states to find the appropriate LR(1)
lookaheads. The text has the details of an algorithm for this.

For a typical language like C there are about 100
grammar rules and somewhere between 50 and
100 valid tokens.

An LR(1) parse table for such a language has
several thousand states, several hundred
thousand entries, and a table size on the order of
1 MB.

An LALR(1) parse table for the language has
several hundred states, perhaps 20,000 entries
and occupies less than 100 KB of space.3

